E-mail: jimmytinghm@ntu.edu.tw
電話: (02) 33662531
專長: 植物分子生物學、植物代謝體學
學歷: 荷蘭 瓦赫寧恩大學 植物科學博士
研究室: 生命科學館 920 室
近年研究主題
-
植物次級代謝化合物(聚乙炔類,萜類)之代謝工程及生合成途徑研究
-
植物本身對代謝化合物的反應及訊號傳遞研究
-
植物揮發性化合物(VOC)與不同生物間的交互作用研究
-
植物與害蟲(昆蟲/根瘤線蟲)交互作用研究
植物逆境韌性與代謝體學研究室
植物次級代謝物 (聚乙炔類, 萜類) 的之代謝工程及生合成途徑研究
植物次級代謝物主要為植物處於逆境環境下、進行防禦時以及植物與其他物種進行交互作用時所產生的代謝化合物。近年來,植物次級代謝物成為 (新) 藥物的合成非常重要的來源,亦大量應用於農業(抑制病原菌的生長)及臨床實驗 (抗發炎反應) 中。本研究室透過轉錄組學 (Transcriptomics) 及代謝體學 (Metabolomics) 來探討植物次級代謝物 (聚乙炔類, 萜類) 的生合成途徑,及其代謝工程研究(圖一)
圖一、植物次級代謝物的代謝工程研究流程圖
植物本身對代謝化合物的反應及訊號傳遞研究
當植物產生過多的次級代謝物時或處於高濃度的次級代謝物環境下,對植物本身將造成毒害反應。本研究室將透過阿拉伯芥 ( Arabidopsis ) 及其突變株處理次級代謝物後,進行轉錄組學
(Transcriptomics) 及代謝體學 (Metabolomics) 的分析,來探討植物對於次級代謝物的反應及訊號傳遞途徑 (圖二) ,以助於未來的代謝工程研究。
圖二、 阿拉伯芥 (Col) 及其突變株 (Mut) 在處理次級代謝物 (GHP) 及對照組 (Mock) 的外觀表現 (左圖A) 。在處理次級代謝物下, 阿拉伯芥 (Col) 及其突變株 (Mut) 的轉錄組學 (Transcriptomics) 分析 (左圖B) 。
植物與昆蟲交互作用研究
植物受到昆蟲啃咬時,將會啟動一系列的化學防禦機制來抵抗昆蟲。本研究室透過不同綠豆及大豆品系來探討豆科植物防禦害蟲的機制,我們發現抗蟲品系綠豆在昆蟲啃咬後產生許多不同的揮發性化合物(VOC)及類黃酮化合物(flavonoids)(圖三)。我們將進一步的探討這些化合物的抗蟲機制,以期應用於農業的害蟲防治上。
圖三、綠豆抗蟲品系(R1)與感蟲品系(S1)在害蟲防禦與乾旱間的權衡調節
植物與根瘤線蟲交互作用研究
根瘤線蟲是植物寄生性線蟲,對全球農業造成重大經濟損失。其中,象耳豆根瘤線蟲(M. enterolobii)為當前新興的寄生性線蟲,能克服許多已知的抗性基因。透過不同野生綠豆品系對根瘤線蟲抗性的篩選,本研究室篩選出具有抗根瘤線蟲的野生綠豆品系CPI。期待透過探討野生綠豆對象耳豆根瘤線蟲之防禦機制,開發出最佳的防治線蟲策略。
圖四、野生綠豆抗根瘤線蟲的防禦機制
代表著作
-
Ching-Han Chang, Chung-Chih Huang, Pei-Yu Su, Yi-Rong Li, Yu‐Shuo Chen, Chong-Yue Wang, Yuan-Yun Zhang, Hieng-Ming Ting, Hao-Jen Huang* (2024). Comparison of early transcriptomic changes to diverse microbial volatiles in Arabidopsis. Physiologia Plantarum. (Accepted with pending)
-
Sook-Kuan Lee, Pin-Zhe Liao, Chih-Yu Lin, Hung-Wei Chen, Meng-Shan Hsieh, Ya-Ping Lin, Yi-Ju Chen, Jia-Heng Hung, Yi-Ling Chiang, Chiu-Ping Cheng, Pei-Chen Janet Chen, Cheng-Ruei Lee*, Jiue-In Yang*, Hieng-Ming Ting* (2024). Wild mungbean resistance to the nematode Meloidogyne enterolobii involves the induction of phenylpropanoid metabolism and lignification. Physiologia Plantarum, 176(5):e14533.
-
Chih-Cheng Chien*, Chuan-Hsin Chang, Hieng-Ming Ting* (2024). A novel lectin receptor kinase gene, AtG-LecRK-I.2, enhances bacterial pathogen resistance through regulation of stomatal immunity in Arabidopsis. Plant Science, 343:112071.
-
Freddy Kuok San Yeo, Elissa Stella Rafael, Zhang Hua Ewe, Poh Sim Ang, Nor Ain Hussin, Tu Anh Vu Thanh, Hung Hui Chung, Lee San Lai, Hieng-Ming Ting, Yongmei Bao (2024). New variants of AvrPiz-t identified in Pyriculariaoryzae from Malaysia. Plant Stress, 11:100322.
-
Yi-Ju Chen#, Boon Huat Cheah#, Chih-Yu Lin, Yu-Ting Ku, Cheng-Hsiang Kuo, Yuan-Yun Zhang, Bing-Rong Chen, Nean Olga, Cheng-Han Hsieh, Pei-Min Yeh, Freddy Kuok San Yeo, Ya-Ping Lin, Wen-Po Chuang, Cheng-Ruei Lee, Hieng-Ming Ting* (2023, Jan). Inducible chemical defenses in wild mungbean confer resistance to Spodoptera litura and possibly at the expense of drought tolerance. Environmental and Experimental Botany, 205:105100.
-
Berta Alquézar, Haroldo Xavier Linhares Volpe, Rodrigo Facchini Magnani, Marcelo Pedreira Miranda, Mateus Almeida Santos, Viviani Vieira Marques, Márcia Rodrigues de Almeida, Nelson Arno Wulff, Hieng-Ming Ting, Michel de Vries, Robert Schuurink, Harro Bouwmeester, Leandro Peña (2021, Mar). Engineered orange ectopically expressing the Arabidopsis β-caryophyllene synthase is not-attractive to Diaphorina citri, the vector of the bacterial pathogen associated to Huanglongbing. Frontiers in Plant Science, 12:641457.
-
Hisao-Hang Chung#, Hieng-Ming Ting#, Wei-Hsi Wang, Ya-Ting Chao, Cheng-Han Hsieh, Maria Karmella Apaya, Yi-Chang Sung, Shih-Shun Lin, Fang-Yu Hwu, Lie-Fen Shyur (2020). Elucidation of enzymes involved in the biosynthetic pathway of bioactive polyacetylenes in Bidens pilosa using integrated omics approaches. J. Exp. Bot. eraa457. (# Co-first author).
-
Hieng-Ming Ting*, Boon Huat Cheah, Yu-Cheng Chen, Pei-Min Yeh, Chiu-Ping Cheng, Freddy Kuok San Yeo, Ane Kjersti Vie, Jens Rohloff, Per Winge, Atle M. Bones and Ralph Kissen* (2020). The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. Front Plant Sci 11, 257.
-
Bo Wang#, Arman Beyraghdar Kashkooli#, Adrienne Sallets, Hieng-Ming Ting, Norbert C.A. de Ruijter, Linda Olofsson, Peter Brodelius, Marc Boutry, Harro J. Bouwmeester, and Alexander van der Krol (2016) Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metabolic Engineering, 38: 159–169. (# equal contribution)
-
Hieng-Ming Ting, Thierry L. Delatte, Pim Kolkman, Johana C. Misas-Villamil, Renier A.L. van der Hoorn, Harro J. Bouwmeester, and Alexander van der Krol (2015) SNARE-RNAi results in higher terpene emission from ectopically expressed caryophyllene synthase in Nicotiana benthamiana. Molecular Plant, 8(3):454–466.
-
Seifu Juneidi, Hieng-Ming Ting, and Alexander van der Krol (2014) Tissue specific expression of a terpene synthase in Nicotiana benthamiana leaves. American Journal of Plant Sciences, 5(18):2799-2810.
-
Hieng-Ming Ting, Bo Wang, Anna-Margareta Rydén, Lotte Woittiez, Teun van Herpen, Francel W.A. Verstappen, Carolien Ruyter-Spira, Jules Beekwilder, Harro J. Bouwmeester, and Alexander van der Krol (2013) The metabolite chemotype of Nicotiana benthamianatransiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytologist, 199(2):352–366.
-
Na Tian, Shuoqian Liu, Hieng-Ming Ting, Jianan Huang, Sander van der Krol, Harro Bouwmeester, and Zhonghua Liu (2013) An improved Agrobacterium tumefaciens mediated transformation of Artemisia annua L. by using stem internodes as explants. Czech Journal of Genetics and Plant Breeding, 49(3): 123–129.
榮譽與獎項
-
國科會2030跨世代年輕學者— 優秀年輕學者 (2024)
-
台大教學傑出獎 (2023)
-
台大教學優良獎 (2022)
開設課程
-
普通生物學
-
植物生理學
-
植物科學最新趨勢
-
進階植物分子生物學
-
植物分子生物學研究方法
-
專題研究
-
專題討論
合作單位
-
亞蔬—世界蔬菜中心 World Vegetable Center
-
農業部 MINISTRY OF AGRICULTURE
-
正瀚生技股份有限公司 CH Biotech R&D Co., LTD